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Aufgabe 1: Betrachtet wird die Hamilton-Funktion
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wobei φ(x) ∈ R, x sind die Gitterpunkte, î ist ein Einheitsvektor in die i-Richtung, a ist die
Gitterkonstante, und E0 ist eine von φ unabhängige Konstante. Das Feld φ wird als φ = Z1/2σ
skaliert. Wie sollen die Parameter E0, aZ, aλ, und v2/Z gewählt werden, um aus H den
Hamilton-Operator des 3-dimensionalen Ising-Modells zu erhalten?

Aufgabe 2: Betrachtet werden thermodynamische Eigenschaften des 1d Ising-Modells bei
h = 0. Wir gehen von periodischen Randbedingungen aus. Im thermodynamischen Limes ist
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.

(a) Bestimmen Sie die innere Energie. Wie verhält sich diese bei T → 0?

(b) Bestimmen Sie die spezifische Wärme. Wie verhält sich diese bei T → 0?

Aufgabe 3: Wir betrachten das 1d Potts–Modell für eine Kette mit N Gitterpunkten und
periodischen Randbedingungen.

(a) Geben Sie die allgemeine Formel für die Zustandssumme an, und schreiben Sie sie in
faktorisierter Form.

(b) Werten Sie die Zustandssumme für q = 3 mittels der Transfermatrixmethode aus.

dE=TdS−pdV+µdN

dF =−S dT−pdV+µdN

dJ =−S dT−pdV−Ndµ

dH =TdS+V dp+µdN

dG=−S dT+V dp+µdN
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