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Aufgabe 1: Falls der Ersatz
∑
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d3~q gerechtfertigt ist, lauten die Energiedichte
und der Druck eines idealen Bose-Gases
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Setzen Sie 1 = ∂q/∂q im zweiten Integrand ein, und führen Sie eine partielle Integration
durch, um p in ähnlicher Form wie E/V auszudrücken, d.h. mittels Bose-Verteilung. Was ist
die Beziehung von p und E/V falls ǫq = q2/(2m)? Gilt dieselbe Beziehung für Fermionen?

Aufgabe 2: Das Kondensat eines idealen Bose-Gases im harmonischen Oszillator besteht aus
N0 Teilchen im Grundzustand und N − N0 Teilchen in angeregten Zuständen. Wenn ein
Kondensat vorliegt, und das chemische Potential gleich der Nullpunktsenergie gesetzt wird,
dann lautet die Teilchenzahlbedingung
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Dabei numerieren nx, ny, nz die Einteilchenquantenzustände [sie sind nicht die Besetzungs-
zahlen dieser Zustände; darüber wurde schon summiert]. Schreiben Sie den Integranden als
geometrische Reihe

∑∞
i=1 exp[−i(...)] und führen Sie die Integration aus. Bestimmen Sie N0

als Funktion der Temperatur.

Aufgabe 3: Zeigen Sie, dass es in einem idealen Bose-Gas in zwei Dimensionen keine Bose-
Einstein-Kondensation gibt. Werten Sie dazu den Zusammenhang zwischen der Teilchenzahl
N und dem chemischen Potential µ aus, und diskutieren Sie das Ergebnis für µ → 0−.
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