Ubungen zur statistischen Thermodynamik 1| Blatt Nr. 4

Aufgabe 1: Falls der Ersatz 3 . — V/(2rh)? [d3q gerechtfertigt ist, lauten die Energiedichte
und der Druck eines idealen Bose-Gases
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Setzen Sie 1 = 0q/0q im zweiten Integrand ein, und fiihren Sie eine partielle Integration
durch, um p in dhnlicher Form wie E/V auszudriicken, d.h. mittels Bose-Verteilung. Was ist
die Beziehung von p und E/V falls ¢, = ¢*/(2m)? Gilt dieselbe Beziehung fiir Fermionen?

Aufgabe 2: Das Kondensat eines idealen Bose-Gases im harmonischen Oszillator besteht aus
N, Teilchen im Grundzustand und N — N, Teilchen in angeregten Zustianden. Wenn ein
Kondensat vorliegt, und das chemische Potential gleich der Nullpunktsenergie gesetzt wird,
dann lautet die Teilchenzahlbedingung
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Dabei numerieren n,,n,,n, die Einteilchenquantenzustdnde [sie sind nicht die Besetzungs-
zahlen dieser Zustande; dariiber wurde schon summiert]. Schreiben Sie den Integranden als
geometrische Reihe >"7°, exp[—i(...)] und fiihren Sie die Integration aus. Bestimmen Sie NN
als Funktion der Temperatur.

Aufgabe 3: Zeigen Sie, dass es in einem idealen Bose-Gas in zwei Dimensionen keine Bose-
Einstein-Kondensation gibt. Werten Sie dazu den Zusammenhang zwischen der Teilchenzahl
N und dem chemischen Potential i aus, und diskutieren Sie das Ergebnis fiir y — 0.
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