

Topological charge density, Wilson line

Exercise 1: We consider $C(x) \equiv \text{tr}[F_{\mu\nu}(x)F_{\rho\sigma}(x)]\epsilon^{\mu\nu\rho\sigma}$, where $\epsilon^{\mu\nu\rho\sigma}$ is the totally antisymmetric 4-dimensional Levi-Civita tensor.

- (a) Show that $C(x)$ is gauge invariant.
- (b) Show that $C(x)$ is invariant in Lorentz transformations, if $\det \Lambda = +1$.
- (c) Verify that $C(x)$ can be expressed as

$$\begin{aligned} C(x) &= \partial_\mu K^\mu(x) , \\ K^\mu(x) &= 2\epsilon^{\mu\nu\rho\sigma} \left(A_\nu^a \partial_\rho A_\sigma^a + \frac{g}{3} f^{abc} A_\nu^a A_\rho^b A_\sigma^c \right) . \end{aligned}$$

[Because of this fact, $C(x)$ integrates to a boundary term in the action, and thus plays no role in the classical equations of motion.]

Exercise 2: A “Wilson line” $W(x, x_0)$ in the μ direction satisfies the equations

$$\begin{aligned} D_\mu(x)W(x, x_0) &= 0 , \\ W(x_0, x_0) &= \mathbb{1}_{N_c \times N_c} . \end{aligned}$$

- (a) Write down a formal solution for $W(x, x_0)$.
- (b) Verify that $W(x, x_0)$ behaves in gauge transformations as

$$W(x, x_0) \rightarrow U(x)W(x, x_0)U^\dagger(x_0) .$$

[Because of this fact, a Wilson line permits for a gauge invariant comparison of quantities defined at x and x_0 , and is therefore called a “parallel transporter”.]