

Wick contractions with Grassmann fields, properties of γ_5 **Exercise 1:** Let

$$\langle \dots \rangle \equiv \frac{\int \{\prod_i dc_i^* dc_i\}(\dots) \exp(-\sum_{p,q} c_p^* A_{pq} c_q)}{\int \{\prod_i dc_i^* dc_i\} \exp(-\sum_{p,q} c_p^* A_{pq} c_q)} ,$$

where c^* and c are Grassmann variables. What do you find for the correlators

$$\langle c_k c_l c_m c_n \rangle , \quad \langle c_k c_l c_m c_n^* \rangle , \quad \langle c_k c_l c_m^* c_n^* \rangle ?$$

Exercise 2: Let us consider Euclidean versions of the Dirac metrics, as defined in the script. Verify the following properties of $\gamma_5 \equiv \gamma_0 \gamma_1 \gamma_2 \gamma_3$:

- (a) $\text{tr} [\gamma_5] = 0$.
- (b) $\text{tr} [\text{uneven number of } \gamma\text{'s}] = 0$, and consequently $\text{tr} [\gamma_5 \gamma_\mu] = \text{tr} [\gamma_5 \gamma_\mu \gamma_\nu \gamma_\rho] = 0$.
- (c) $\text{tr} [\gamma_5 \gamma_\mu \gamma_\nu] = 0$.
- (d) $\text{tr} [\gamma_5 \gamma_\mu \gamma_\nu \gamma_\rho \gamma_\sigma] = N \epsilon_{\mu\nu\rho\sigma}$, with $N = \text{tr} [\gamma_0^2]$ and

$$\epsilon_{\mu\nu\rho\sigma} \equiv \begin{cases} +1, & \text{if } \mu\nu\rho\sigma \text{ is an even permutation of } 0123, \\ -1, & \text{if } \mu\nu\rho\sigma \text{ is an odd permutation of } 0123, \\ 0, & \text{otherwise.} \end{cases}$$