exercises for mechanics I	leet 4
---------------------------	--------

[tutorials 24.3. and 25.3., hand-in 4.4., solutions please in English]

Exercise 1 (Foucault pendulum): Consider a point mass attached to a pendulum of length l , undergoing 3-dimensional movement in the gravitational field $\vec{g} = -g \vec{e_z}$. The coordinates of the rest position are $x = y = z = 0$.

- (a) Show that to first order in deviations from the rest position the equations of motion take the form $\ddot{x} = -gx/l$, $\ddot{y} = -gy/l$. Solve these for the initial conditions $x(0) = r_0$, $y(0)=0, \, \dot{x}(0)=0, \, \dot{y}(0)=v_0,$ and sketch the trajectory. (3 points)
- (b) Now we include the rotation of the earth and the Coriolis force. At latitude θ , the angular velocity of earth rotation takes the form $\vec{\omega} = (-\omega \cos \theta, 0, \omega \sin \theta)$ in the above coordinate system. Show that if we omit Ω^2 compared with g/l , then the solution in the presence of the Coriolis force can be expressed as

$$
\left(\begin{array}{c} X(t) \\ Y(t) \end{array}\right) = \left(\begin{array}{cc} \cos(\Omega t) & \sin(\Omega t) \\ -\sin(\Omega t) & \cos(\Omega t) \end{array}\right) \left(\begin{array}{c} x(t) \\ y(t) \end{array}\right) ,
$$

where $(x(t), y(t))$ is the solution from point (a) and $\Omega \propto \omega$ is a constant to be determined. Sketch the trajectory. (3 points)

Exercise 2: On a town square at latitude θ stands a tower of height H. The square is defined as the (x, y) plane, the tower as the z axis. Because of earth rotation we are faced with a rotating system. Determine how far a freely falling object (initial velocity zero) lands from the bottom of the tower. (6 points) [Hint: terms of order ω^2 can be omitted. Answer: $\frac{2H\omega}{3}\sqrt{\frac{2H}{g}}\cos\theta.$]

Exercise 3: Consider an electron (e^{-}) and a positron (e^{+}) . At time $t = 0$ their relative separation is $\vec{r}(0)=r_0\,\vec{e}_x$ with $r_0=10^{-10}$ m, and their relative velocity $\vec{v}(0)=v_0\,\vec{e}_y$ with $v_0 = \alpha c$, where $\alpha = 1/137$ and c is the speed of light.

- (a) Determine the reduced mass, the inner kinetic energy, the potential energy, the total inner energy, and the angular momentum \overline{L} . (4 points)
- (b) The system described, known as positronium, is a bound state. Why? Would this be the case if v_0 were three times as large? (2 points)

Exercise 4: A mass μ moves with energy E and angular momentum $\ell = |\vec{L}|$ in the potential well $U(r) = -\alpha/r^2 \ (\alpha > 0).$

- (a) Determine the effective potential $U_{\text{eff}}(r)$. Sketch it, and discuss qualitatively the trajectories. There are three physically meaningful ranges of E and ℓ , which ones? (2 points)
- (b) Write down the equation for $r(t)$ and solve for $t(r)$. With a suitable choice of the origin of the time coordinate the solution reads

$$
t = \frac{1}{E} \sqrt{\frac{\mu}{2}} \sqrt{Er^2 - \frac{\ell^2}{2\mu} + \alpha}.
$$

Under which circumstances does the mass fall from a distance r_{0} to the center? How long does this process take? (4 points)