[Tutorial 30.11.

Exercise 1: An infinitely long and thin straight wire is at rest with respect to the inertial system Σ' and carries the charge density $\lambda:=Q/\text{length}$. This system moves with respect to the lab frame Σ with the velocity \vec{v} , which is parallel to the direction of the wire.

- (a) What are \vec{E} and \vec{B} in cylindrical coordinates in Σ' ?
- (b) Carry out a Lorentz transformation, in order to determine \vec{E} and \vec{B} in Σ .
- (c) What are the charge and current density in Σ ?
- (d) Make use of ρ and \vec{j} in Σ , in order to determine directly \vec{E} and \vec{B} in the lab frame. Do you get the same as under point (b)?

Hint: A Lorentz boost $u^\mu = \Lambda^\mu_{\ \nu} u^{' \nu}$ in the x direction with velocity $\vec v = v \vec e_x$ has the form

$$\Lambda = \left(\begin{array}{cccc} \gamma & \beta \gamma & 0 & 0 \\ \beta \gamma & \gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right) \;, \quad \text{with} \quad \beta := \frac{v}{c} \quad \text{and} \quad \gamma := \frac{1}{\sqrt{1 - \beta^2}} \;.$$

Exercise 2: In the lecture we have obtained the retarded Green's function

$$G_{\rm ret}(\vec{x},t) = \frac{\delta(\frac{r}{c}-t)}{r} , \quad r \equiv |\vec{x}| .$$

Show that this can be rewritten in a Lorentz invariant form as $G_{\rm ret}=2c\,\theta(t)\delta(x^2)$, $x\equiv(x^0,\vec{x})$.

Exercise 3: In the lecture we have obtained the vector potential corresponding to a general current density as

$$\vec{A}(\vec{x},t) = \frac{1}{c} \int_{V} d^{3}\vec{x}' \frac{\vec{j}(\vec{x}', t - \frac{|\vec{x} - \vec{x}'|}{c})}{|\vec{x} - \vec{x}'|}.$$

Let us now apply this to a single charged particle moving on the trajectory $\vec{r}(t)$, with

$$J^{\nu}(\vec{x},t) = q \, \delta^{(3)}(\vec{x} - \vec{r}(t)) \left(\begin{array}{c} c \\ \dot{\vec{r}}(t) \end{array} \right) \; . \label{eq:Jnu}$$

Show [at least for the spatial components] that this leads to the "Liénard-Wiechert potential"

$$A^{\nu}(x) = \frac{qu^{\nu}(\tau_0)}{u(\tau_0) \cdot (x - r(\tau_0))} ,$$

where au_0 is the Eigenzeit (proper time) at which the signal observed at x was sent.