Exercises Electrodynamics

Sheet 9

Tutorial 23.11.

Exercise 1: A polarized plane wave has the electric field $\vec{E} = \text{Re}[\vec{\lambda}\,e^{-i(\omega t - \vec{k}\cdot\vec{x})}]$, where $\vec{\lambda}$ is the polarization vector (in the notation of the script, $\vec{\lambda} = i|\vec{k}|\vec{\epsilon}$ and $\omega = ck$). The polarization vector is orthogonal to \vec{k} , and in general complex; if it is real, the wave is *linearly polarized*.

Consider two plane waves of the same amplitude, phase, and angular frequency. One of them is polarized in the direction of \vec{e}_y and propagates in the negative z-direction; the other is polarized in the direction of $\vec{e} = \cos\alpha \, \vec{e}_y + \sin\alpha \, \vec{e}_z$ and propagates in the positive x-direction. Along the line $\vec{y}(s) = \frac{s}{\sqrt{2}}(\vec{e}_x + \vec{e}_y)$ are placed many detectors close to each other. These measure the time average of the electric field squared, which is proportional to the intensity,

$$I(s) := \langle \vec{E}^2 \rangle := \frac{1}{T} \int_0^T \! \mathrm{d}t \, \vec{E}^2(\vec{y}(s),t) \;, \quad \omega T \gg 1 \;. \label{eq:Isolution}$$

What is the total electric field $\vec{E}(\vec{x},t)$? What is I(s)? Which distances Δs have the maxima of I(s) along the line? How can one deduce from Δs the wavelength λ ? For which α is the interference pattern most pronounced (show a sketch)?

Exercise 2: In the lecture we determined the vector potential of a monochromatic dipole emitter,

$$\vec{A}(\vec{x},t) = k\vec{P} \frac{\sin(-\omega t + kr)}{r}$$
, $k := \frac{\omega}{c}$, $r := |\vec{x}|$, $r \gg d$,

where \vec{P} is the electric dipole moment, and d the extension of the emitters, placed at $\vec{x} = \vec{0}$.

- (a) Determine the fields \vec{B} and \vec{E} .
- (b) Show that in the so-called near zone, $kr\ll 1$, the magnetic induction is much smaller than the electric field.
- (c) Show that in the so-called far zone, $kr\gg 1$, the typical properties of electromagnetic waves, that is

$$\vec{e}_r \cdot \vec{E} = \vec{e}_r \cdot \vec{B} = \vec{E} \cdot \vec{B} = 0 ,$$

are satisfied. Here $\vec{e}_r := \vec{r}/r$ is the propagation direction of the outgoing spherical wave.

Exercise 3: A particle is kept on a circular track of radius R with an angular velocity ω , so that the movement is non-relativistic, i.e. $\omega R \ll c$. The charge density can be represented as

$$\rho(\vec{x},t) = q \,\delta\big(x - R\cos(\omega t + \alpha)\big) \,\delta\big(y - R\sin(\omega t + \alpha)\big) \,\delta(z) \;.$$

- (a) Compute the dipole moment of this source, and represent it as $\vec{P}={\rm Re}\,[\vec{P}_0\,e^{-i\omega t}].$
- (b) We now replace one particle by $N\geq 2$ particles, so that their phases are $\alpha_k=2\pi k/N$, $k=0,\dots,N-1$. Show that in this case the dipole moment vanishes. [Remark: an apparent consequence, that there is no radiation, holds only in the non-relativistic limit.]