Exercise 1: In the lecture we found a result for the propagator of a free theory:

$$K(\phi_2,t_2;\phi_1,t_1) \; \equiv \; \langle \phi_2 \, | e^{-\frac{i\hat{H}(t_2-t_1)}{\hbar}} | \, \phi_1 \rangle = \sqrt{\frac{m}{2\pi i\hbar(t_2-t_1)}} \exp \left\{ \frac{im(\phi_2-\phi_1)^2}{2\hbar(t_2-t_1)} \right\} \, .$$

Verify with this explicit expression that K has the following properties:

- (a) "initial condition": $\lim_{t_2\to t_1^+}K(\phi_2,t_2;\phi_1,t_1)=\delta(\phi_2-\phi_1)$.
- (b) "equation of motion": K fulfils a Schrödinger equation with respect to ϕ_2 and t_2 .
- (c) "decomposition":

$$K(\phi_3, t_3; \phi_1, t_1) = \int_{-\infty}^{\infty} d\phi_2 K(\phi_3, t_3; \phi_2, t_2) K(\phi_2, t_2; \phi_1, t_1) , \quad t_1 < t_2 < t_3 .$$

(d) "inverse":

$$\int_{-\infty}^{\infty} \mathrm{d}\phi_2 \, \tilde{K}(\phi_3, t_1; \phi_2, t_2) K(\phi_2, t_2; \phi_1, t_1) = \delta(\phi_3 - \phi_1) \;,$$

where $\tilde{K}(\phi_3,t_3;\phi_2,t_2)\equiv K^*(\phi_2,t_2;\phi_3,t_3)$ describes propagation "backwards in time".

Exercise 2: Let us consider a potential with a constant tilt, $V(\phi)=-F\phi$. At time t_1 , the field has the value ϕ_1 , at time t_2 , ϕ_2 .

- (a) Determine the classical solution $\phi_{\rm cl}(t)$ and the corresponding action $S_M[\phi_{\rm cl}]$.
- (b) Determine the quantum-mechanical propagator $K(\phi_2,t_2;\phi_1,t_1)$.

[Answer:
$$K = \sqrt{\frac{m}{2\pi i \hbar(t_2-t_1)}} \exp\left\{\frac{i}{\hbar}\left[\frac{m(\phi_2-\phi_1)^2}{2(t_2-t_1)} + \frac{F(\phi_1+\phi_2)(t_2-t_1)}{2} - \frac{F^2(t_2-t_1)^3}{24m}\right]\right\}$$
.]

Exercise 3: In the lecture we found a result for the propagator of a 1-dimensional harmonic oscillator:

$$\begin{split} K(\phi_2,t_2;\phi_1,t_1) &= \sqrt{\frac{m\omega}{2\pi i\hbar \sin[\omega(t_2-t_1)]}} \\ &\times &\exp\biggl\{\frac{im\omega}{2\hbar \sin[\omega(t_2-t_1)]} \Big[(\phi_1^2+\phi_2^2)\cos[\omega(t_2-t_1)]-2\phi_1\phi_2\Big]\biggr\}\;. \end{split}$$

- (a) Make use of $K(\phi_2,t_2;\phi_1,t_1)$ in order to determine $\mathrm{tr}\Big[e^{-\frac{i\hat{H}(t_2-t_1)}{\hbar}}\Big].$ [*Hint:* Compute the trace in the $|\phi\rangle$ basis.] [*Answer:* $\frac{1}{2i\sin[\omega(t_2-t_1)/2]}.$]
- (b) Extract from the result of point (a) the energy eigenvalues of the system. [Hint: Compute the trace this time in the energy eigenbasis.]