Exercise 1: Consider the set $S = \{I, I_{\rm P}, I_{\rm T}, I_{\rm PT}\} \in {\rm O(3,1)}$, where I is the identity transformation, $I_{\rm P}$ the space reflection, $I_{\rm T}$ the time reversal, and $I_{\rm PT}$ the spacetime reflection.

- (a) Show that S is a subgroup of the Lorentz group.
- (b) Construct the multiplication table for S.
- (c) The group \mathbb{Z}_2 is the set $\mathbb{Z}_2=\{e,a\}$ with the rule $a\cdot a=e.$ Show that $S\cong \mathbb{Z}_2\otimes \mathbb{Z}_2.$

Exercise 2: The general commutation relation of the Lorentz algebra reads

$$[J_{\mu\nu},J_{\rho\sigma}] = -i \big(\eta_{\nu\rho}J_{\mu\sigma} - \eta_{\mu\rho}J_{\nu\sigma} - \eta_{\nu\sigma}J_{\mu\rho} + \eta_{\mu\sigma}J_{\nu\rho}\big)\;, \quad \eta = \mathrm{diag}(-+++)\;.$$

Show that these imply

$$[J_{23}, J_{23}] = 0, [J_{23}, J_{31}] = i J_{12}, [J_{23}, J_{12}] = -i J_{31},$$

$$[J_{23}, J_{10}] = 0, [J_{23}, J_{20}] = i J_{30}, [J_{23}, J_{30}] = -i J_{20},$$

$$(1)$$

and that the 2×2 matrices defined in the lecture satisfy these relations.

Exercise 3: Let γ_{μ} be the Dirac matrices, fulfilling the Clifford algebra $\{\gamma_{\mu}, \gamma_{\nu}\} = -2\eta_{\mu\nu}\mathbbm{1}_{4\times 4}$. Consider the standard represention

$$\gamma_0 = \begin{pmatrix} \mathbbm{1}_{2 \times 2} & 0 \\ 0 & -\mathbbm{1}_{2 \times 2} \end{pmatrix}, \qquad \gamma_k = \begin{pmatrix} 0 & -\sigma_k \\ \sigma_k & 0 \end{pmatrix}.$$

Verify that the 4×4 matrices $\mathscr{D}(J_{\mu\nu})\equiv i[\gamma_{\mu},\gamma_{\nu}]/4$ satisfy eq. (1).

Exercise 4: Let $\sigma_{\mu} \equiv (\mathbbm{1}_{2 \times 2}, \sigma_k)$ and $\bar{\sigma}_{\mu} \equiv (\mathbbm{1}_{2 \times 2}, -\sigma_k)$.

(a) Show that the generators of the fundamental representation of $SL(2,\mathbb{C})$ (from the lecture) can be written as

$$J_{\mu\nu} = \frac{i}{4} \left(\bar{\sigma}_{\mu} \sigma_{\nu} - \bar{\sigma}_{\nu} \sigma_{\mu} \right) . \tag{2}$$

(b) In the so-called Weyl representation we write the Dirac matrices as

$$\gamma_{\mu} = \left(\begin{array}{cc} 0 & \bar{\sigma}_{\mu} \\ \sigma_{\mu} & 0 \end{array} \right) \; .$$

If we consider the 4×4 representation matrices $\mathcal{D}(J_{\mu\nu})=i[\gamma_{\mu},\gamma_{\nu}]/4$ from exercise 3, how do the 2×2 matrices of eq. (2) make an appearance in them?