ACTP

sheet nr. 03

Exercise 1: Following the lectures, an invariance group with the "metric" η (whereby $\eta^\dagger=\eta$, and η^{-1} exists) is composed of the elements $g\in G$ satisfying $g^\dagger\eta g=\eta$. The generators of G are T^a , and they satisfy $(T^a)^\dagger\eta=\eta\,T^a$, with $a=1,\ldots$, dim. We now consider a vector space spanned by T^a , with elements of the form $v=\sum_{a=1}^{\dim}v^aT^a$, with $v^a\in\mathbb{R}$. The adjoint representation operates in this vector space, and is defined through the mapping $g\mapsto D(g)$, with $v'\equiv [D(g)](v)\equiv gvg^{-1}$.

- (a) Show that $v^{\dagger} = \eta v \eta^{-1}$ and that D(g) respects this property.
- (b) Consider a "small" transformation, $g=\exp\left(i\sum_{a=1}^{\dim}\theta^aT^a\right)$, with $\theta^a\ll 1$. The generators F^a of the adjoint representation can be identified from the series expansion

$$(v')^b = v^b + \sum_{a,c=1}^{\dim} i \,\theta^a (F^a)^{bc} v^c + \mathcal{O}(\theta^2) .$$

Verify that $(F^a)^{bc} = -if^{abc}$.

(c) Making use of the Jacobi identity, show that $[F^a, F^b] = if^{abc}F^c$.

Exercise 2: Let d be the dimension of a representation, T the normalization of the generators in this representation $(\operatorname{tr}\{T^aT^b\}\equiv T\,\delta^{ab})$, and C a quadratic Casimir constant, defined as $\sum_{a=1}^{\dim}(T^aT^a)_{AB}\equiv C\,\delta_{AB}$. Show that in $\operatorname{SU}(n)$, the fundamental (F) and adjoint (A) representations have

$$d_{\rm F} = n \,, \qquad T_{\rm F} = \frac{1}{2} \,, \qquad C_{\rm F} = \frac{n^2 - 1}{2n} \,,$$

$$d_{\rm A} = n^2 - 1 \,, \qquad T_{\rm A} = n \,, \qquad C_{\rm A} = n \,.$$

Exercise 3: Verify the equivalence of the irreducible representations **2** and **2*** of SU(2). [*Hint:* use the Pauli matrix σ^2 as the similarity transformation.]

Exercise 4: Consider a matrix v of the form in Exercise 1. For the case of SU(2), verify the relations $tr[v^3] = 0$ and $tr[v^4] = (tr[v^2])^2/2$.