Standard Model	Sheet 11	06.05.2019

Exercise 1: How to see experimentally the number of colours?

- (a) In Exercise 7.3, the hypercharge assignments of u and d-type quarks were given. Starting from the known form of the $SU_L(2)\times U_Y(1)$ covariant derivative, determine the electric charges of both quark types in units of e. $[Q_u=+\frac{2}{3},\ Q_d=-\frac{1}{3}]$
- (b) In Exercises 3.3-4, the cross section for $e^-e^+ \to \mu^-\mu^+$ scattering was given. Make use of this result in order to estimate

$$R(E) \equiv \frac{\sigma(e^-e^+ \to {\rm hadrons})}{\sigma(e^-e^+ \to \mu^-\mu^+)} \; , \label{eq:RE}$$

where $E=\sqrt{s}$, for 1 GeV $\leq E \leq$ 10 GeV. $[R\approx N_{\rm c}\sum_{2m_{\rm f}\leq E}Q_{\rm f}^2.]$ (An experimental measurement of this ratio allows in principle to determine $N_{\rm c}$, although we should note that Q_u,Q_d also change if $N_{\rm c}\neq 3$, as will be discussed in Exercise 12.3.)

Exercise 2: Basics of isospin conservation.

- (a) If quarks are identified as the isospin states $u=|\frac{1}{2}\,,+\frac{1}{2}\,\rangle$, $d=|\frac{1}{2}\,,-\frac{1}{2}\,\rangle$, then three-quark states can have either $I=\frac{1}{2}$ or $I=\frac{3}{2}$. Suggest particles for these states, and check that those corresponding to higher-dimensional representations have heavier masses.
- (b) Pions are identified as the isospin states $\pi^+=|1,1\rangle$, $\pi^0=|1,0\rangle$, $\pi^-=|1,-1\rangle$, nucleons as $p=|\frac{1}{2}\,,+\frac{1}{2}\,\rangle$, $n=|\frac{1}{2}\,,-\frac{1}{2}\,\rangle$. Considering elastic pion-nucleon scattering, there are six possible processes:

$$\pi^{+} + p \to \pi^{+} + p$$
, $\pi^{0} + p \to \pi^{0} + p$, $\pi^{-} + p \to \pi^{-} + p$, $\pi^{+} + n \to \pi^{+} + n$, $\pi^{0} + n \to \pi^{0} + n$, $\pi^{-} + n \to \pi^{-} + n$.

How many independent amplitudes are there in these scatterings if isospin symmetry is assumed exact? Can you express all amplitudes in terms of the independent ones?

Exercise 3: Basics of the parton model. In the lecture the variables $Q_{\mathsf{E}}^2 := -Q^2$ and $x = Q_{\mathsf{E}}^2/(2Q \cdot P)$ were defined for deep inelastic scattering; here P is the proton and Q the photon four-momentum. The energy can be assumed to be so large that effectively $m_e = 0$.

(a) Show that $0 \le x \le 1$.

The parton distribution functions, $f_i(x)$, satisfy "sum rules", for instance $\int_0^1 \mathrm{d}x \, x \sum_i f_i(x) = 1$ as discussed in the lecture. Let us assume that proton structure can de described by the distributions $u_v(x)$, $d_v(x)$, s(x), $\bar{s}(x)$, g(x). Which sum rules capture the facts that

- (b) proton has electric charge Q = +1?
- (c) proton has no net strangeness?