Standard Model	Sheet 8	08.04.2019
----------------	---------	------------

Exercise 1: Massive gauge field propagator. In Exercise 1 of Sheet 2 a massless photon propagator was constructed. Let us now replace the gauge field A^{μ} by that of the Z-boson, Z^{μ} , and add a mass term to the Lagrangian,

$$\delta \mathscr{L} = \frac{1}{2} M_Z^2 Z^\mu Z_\mu \ .$$

Construct the corresponding propagator.

Exercise 2: A hidden invariance. In the script the Higgs doublet was assumed to be well approximated by a non-zero constant in the lower component, $\Phi = \frac{1}{\sqrt{2}}(0\ v)^T$, $v \in \mathbb{R}$, but the pattern of gauge field mass generation should remain the same also for a general Φ .

(a) Show that any Φ can be expressed as

$$\Phi = (\alpha_0 \sigma^0 + i \alpha_a \sigma^a) \frac{1}{\sqrt{2}} \left(\begin{array}{c} 0 \\ v \end{array} \right) \; , \label{eq:phi}$$

where $v:=\sqrt{2\,\Phi^\dagger\Phi}>0$ and $A:=\alpha_0\sigma^0+i\alpha_a\sigma^a$ is unitary $(\sigma^0:=\mathbb{1},\,\alpha_0^2+\sum_a\alpha_a^2=1).$

- (b) Show that the matrices $\sigma'^a := A^{\dagger} \sigma^a A$ are traceless and Hermitean, and can therefore be expressed as linear combinations of the original σ^a .
- (c) Show that if we define new SU_L(2) gauge fields through $\sum_a A_\mu^a \sigma'^a =: \sum_a A_\mu'^a \sigma^a$, then this transformation can be viewed as a rotation in the space of the A_μ^a .
- (d) Armed with this knowledge, show finally that

$$\delta \mathscr{L} = \frac{1}{4} \Phi^{\dagger} (g_w A^a_{\mu} \sigma^a - g_Y B_{\mu} \sigma^0) (g_w A^{b\mu} \sigma^b - g_Y B^{\mu} \sigma^0) \Phi$$

necessarily leaves a certain linear combination of the gauge fields massless.

Exercise 3: Symmetry breaking with an adjoint scalar. According to Exercise 1(c) of Sheet 7, a gauge-invariant kinetic term for a scalar field in the adjoint representation reads

$$\mathscr{L} = \frac{1}{2} \operatorname{Tr} \left\{ [D_{\mu}, \Xi] [D^{\mu}, \Xi] \right\} ,$$

where Ξ is a traceless and Hermitean matrix. Let D_{μ} be the same covariant derivative as acts on the Higgs doublet in the Minimal Standard Model, viz. $D_{\mu} = \partial_{\mu} - i g_w A_{\mu}^a T^a + i g_Y B_{\mu} T^0$. Suppose that Ξ develops an expectation value, e.g. $\Xi \to v \sigma^3$, v>0. Show that in this case only two gauge field linear combinations obtain a mass, whereas two others remain massless.