Standard	Model	Sheet 7	01.04.2019
Standard	IVIOUCI	J.I.CCL I	01.01.2013

Exercise 1: Non-Abelian and Abelian gauge transformations.

(a) A field (fermion or scalar) is said to transform under the "fundamental" representation of a non-Abelian gauge group $\mathrm{SU}(N)$ if $\Phi \to \Phi' = U\Phi$, where U is a gauge transformation matrix. The covariant derivative is written as $D_\mu = \partial_\mu - igA_\mu$, where g is a coupling constant and A_μ are traceless and Hermitean matrices. Show that for gauge "covariance", $D'_\mu\Phi' = UD_\mu\Phi$, the matrix A_μ needs to transform as

$$A_{\mu} \rightarrow A'_{\mu} = U A_{\mu} U^{-1} + \frac{i}{g} U \partial_{\mu} U^{-1}$$
.

- (b) Show that if $U \in SU(N)$, then A'_{μ} is also traceless and Hermitean.
- (c) A traceless and Hermitean matrix Ξ is said to transform under the "adjoint" representation of a gauge group SU(N) if $\Xi \to \Xi' = U \Xi U^{-1}$. Show that in this case it is the structure $[D_{\mu},\Xi]$ which transforms covariantly: $[D'_{\mu},\Xi'] = U[D_{\mu},\Xi]U^{-1}$.
- (d) Various MSM fields have different "charges" with respect to the Abelian $U_Y(1)$ gauge group, whereas with respect to the non-Abelian groups all fields transform in the same way (or do not transform at all). Can you explain why different fields can have different couplings $(g_Y \to g_Y Y)$ for the single gauge group $U_Y(1)$?

Exercise 2: Conjugate Higgs field. A general SU(2) transformation can be written as

$$U = \sigma^0 \cos |\alpha| + i \sum_{a=1}^3 \sigma^a \alpha^a \frac{\sin |\alpha|}{|\alpha|} , \quad |\alpha| := \left(\sum_{a=1}^3 \alpha^a \alpha^a\right)^{1/2}.$$

Here σ^a , a=1,2,3, are the Pauli matrices, α^a are real parameters, and $\sigma^0:=\mathbb{1}_{2\times 2}$.

- (a) Verify that $U \in SU(2)$.
- (b) If Φ transforms as $\Phi \to \Phi' = U e^{ig_Y Y \theta} \Phi$, then how does $\tilde{\Phi} \equiv i\sigma^2 \Phi^*$ transform?

Exercise 3: Hypercharge assignments. The fields Φ , Q_{iL} , u_{jR} , d_{jR} , L_{iL} , ν_{jR} , e_{jR} have the hypercharge assignments $-\frac{1}{2}$, $-\frac{1}{6}$, $-\frac{2}{3}$, $+\frac{1}{3}$, $+\frac{1}{2}$, 0, +1, respectively.

(a) Verify that the following Yukawa interactions are invariant both under $SU_1(2)$ and $U_{V}(1)$:

$$\bar{Q}_{iL}\,\tilde{\Phi}\,u_{jR}\,,\quad \bar{Q}_{iL}\,\Phi\,d_{jR}\,,\quad \bar{L}_{iL}\,\tilde{\Phi}\,\nu_{jR}\,,\quad \bar{L}_{iL}\,\Phi\,e_{jR}\,.$$

(b) Leaving the assignments of Φ and the leptons fixed, but generalizing that of d_{jR} to be $(N_{\rm c}-1)/(2N_{\rm c})$, where $N_{\rm c}$ is a free integer, determine the assignments of Q_{iL} and u_{jR} .