Exercise 1: Eigenstates of C and P. Neutral kaons can be represented by "currents",

$$K^0 = Z \, \bar{\psi}_d \, i \gamma^5 \psi_s \,, \quad \bar{K}^0 = Z \, \bar{\psi}_s i \gamma^5 \psi_d \,,$$

where Z is some constant.

(a) Show that in the transformations P and C,

$$K^0 \xrightarrow{P} -K^0$$
, $\bar{K}^0 \xrightarrow{P} -\bar{K}^0$, $K^0 \xrightarrow{C} \bar{K}^0$, $\bar{K}^0 \xrightarrow{C} K^0$.

(b) If we consider the corresponding quantum-mechanical states, then

$$\hat{P}|K^0\rangle = -|K^0\rangle$$
, $\hat{P}|\bar{K}^0\rangle = -|\bar{K}^0\rangle$, $\hat{C}|K^0\rangle = |\bar{K}^0\rangle$, $\hat{C}|\bar{K}^0\rangle = |K^0\rangle$.

Construct linear combinations of $|K^0\rangle$, $|\bar{K}^0\rangle$ which are eigenstates of $\hat{C}\hat{P}$.

Exercise 2: Charge conjugation. The charge conjugation matrix should satisfy the following relations:

$$C = -C^T$$
, $C(-\gamma^{\mu})^T C^{-1} = \gamma^{\mu}$.

Show that:

- (a) The matrices $-(\gamma^{\mu})^T$ satisfy the Clifford algebra and that in this sense C is a similarity transformation between different representations of the Clifford algebra.
- (b) If we define $\hat{\gamma}_0 := \gamma^0$, $\hat{\gamma}_k := -i\gamma^k$, k=1,2,3, which are Hermitean matrices, then the transformation can be written as $C(-\hat{\gamma}_\mu^*)C^{-1} = \hat{\gamma}_\mu$, so that C must anti-commute with any purely real $\hat{\gamma}_\mu$. [Hint: Make use of the general property $(\gamma^\mu)^\dagger = \gamma^0 \gamma^\mu \gamma^0$.]
- (c) If C is expressed as a product of two different real $\hat{\gamma}_{\mu}$ matrices, so that it automatically anticommutes with them both, then also the first property $C = -C^T$ is satisfied.

(Note: In the "standard representation", $\hat{\gamma}_0$ and $\hat{\gamma}_2$ are real and $C=\hat{\gamma}_0\hat{\gamma}_2$.)

Exercise 3: Chirality. With the known matrix γ^5 ($\gamma^5 := i\gamma^0\gamma^1\gamma^2\gamma^3$; $(\gamma^5)^2 = 1$; $\{\gamma^5, \gamma^{\tilde{\mu}}\} = 0$, $\tilde{\mu} = 0, 1, 2, 3$), which is defined to measure "chirality", we can define

$$\mathbb{P}_{\mathsf{L}} := \frac{\mathbb{1} - \gamma^5}{2} \; , \quad \mathbb{P}_{\mathsf{R}} := \frac{\mathbb{1} + \gamma^5}{2} \; .$$

(It is easily verified that $\mathbb{P}_{\mathsf{L},\mathsf{R}}$ are projection operators: $\mathbb{1} = \mathbb{P}_{\mathsf{L}} + \mathbb{P}_{\mathsf{R}}$, $\mathbb{P}^2_{\mathsf{L}} = \mathbb{P}_{\mathsf{L}}$, $\mathbb{P}^2_{\mathsf{R}} = \mathbb{P}_{\mathsf{R}}$, $\mathbb{P}^2_{\mathsf{L}} = \mathbb{P}_{\mathsf{L}}$, $\mathbb{P}^2_{\mathsf{R}} = \mathbb{P}_{\mathsf{R}}$, with the property $[\gamma^5, \gamma^{\bar{\mu}}] = 0$, $\bar{\mu} > 3$. The index μ includes both $\tilde{\mu}$ and $\bar{\mu}$.

- (a) Defining $\psi_L \equiv \mathbb{P}_L \psi$, $\psi_R \equiv \mathbb{P}_R \psi$, show that $\gamma^5 \psi_L = -\psi_L$, $\gamma^5 \psi_R = \psi_R$, i.e. $\psi_{L,R}$ are eigenstates of chirality.
- (b) Show that in the massless limit, $\mathscr{L}_{\psi} \equiv \bar{\psi} \, i \gamma^{\mu} D_{\mu} \, \psi$ can be split into a sum of three terms: one for $\psi_{\rm L}$, one for $\psi_{\rm R}$, and a third mixing $\psi_{\rm LR}$ but only involving the "extra" indices $\bar{\mu}$.