Standard Model	Sheet 2	25.02.2019
----------------	---------	------------

Exercise 1: Constructing propagators. Consider the QED Lagrangian $\mathscr{L}=-\frac{1}{4}\,F^{\mu\nu}F_{\mu\nu}+\bar{\psi}(i\gamma^{\mu}D_{\mu}-m)\psi-\frac{1}{2\xi}(\partial_{\mu}A^{\mu})^{2}$, where ξ is a gauge parameter. Let us write down the action $(S=\int_{X}\mathscr{L})$ in Fourier representation, so that the quadratic part (=: S_{0}) becomes

$$iS_0 = -\int_{PQ} \left\{ \frac{1}{2} A_{\alpha}(P) \delta(P+Q) M_1^{\alpha\beta}(P) A_{\beta}(Q) + \bar{\psi}_{\rho}(P) \delta(P-Q) M_2^{\rho\sigma}(P) \psi_{\sigma}(Q) \right\},\,$$

where α, β are Lorentz indices and ρ, σ are spinor indices.

- (a) Construct the inverse matrices M_1^{-1} , M_2^{-1} .
- (b) Suppose that we add a term $\propto \epsilon_{\alpha\beta\mu\nu}F^{\alpha\beta}F^{\mu\nu}$ to the Lagrangian, where $\epsilon_{\alpha\beta\mu\nu}$ is a totally antisymmetric tensor, with $\epsilon_{0123}:=1$. Show that this would not change M_1^{-1} .

Exercise 2: Time ordering. Let us fix the spatial momentum \vec{p} and consider two "scalar" propagators with different prescriptions for circumventing the poles on the integration contour:

$$\Delta_T(t,t') := \int_{-\infty}^{\infty} \frac{\mathrm{d}P_0}{2\pi} \frac{i\,e^{-iP_0(t-t')}}{P_0^2 - E_p^2 + i0^+} \;, \quad \Delta_R(t,t') := \int_{-\infty}^{\infty} \frac{\mathrm{d}P_0}{2\pi} \frac{i\,e^{-iP_0(t-t')}}{(P_0 + i0^+)^2 - E_p^2} \;.$$

- (a) Argue from the integral representations that both functions separately satisfy the *inhomogeneous* equation $(\partial_t^2 + E_p^2)\Delta_{T,R} = -i\delta(t-t')$.
- (b) Sketch the poles in the complex plane and, using the residue theorem to compute $\Delta_T \Delta_R$, show that it satisfies the *homogeneous* equation $(\partial_t^2 + E_p^2)(\Delta_T \Delta_R) = 0$.
- (c) Verify that the difference between $\Delta_{T,R}$ lies in the boundary conditions: Δ_T is "time-ordered", $\Delta_T(t,t') = \Delta_T(t',t)$, whereas Δ_R is "retarded", $\Delta_R(t,t') = 0$ for t < t'.

Exercise 3: QED processes. Draw the "tree-level" (i.e. no closed loops) QED Feynman diagrams for the following processes:

- (a) $e^- + \mu^- \rightarrow e^- + \mu^-$ ("Mott scattering").
- (b) $e^- + e^- \rightarrow e^- + e^-$ ("Møller scattering").
- (c) $e^- + e^+ \rightarrow e^- + e^+$ ("Bhabha scattering")
- (d) $e^- + \gamma \rightarrow e^- + \gamma$ ("Compton scattering").
- (e) $e^- + e^+ \rightarrow \gamma + \gamma$ ("pair annihilation").
- (f) $\gamma + \gamma \rightarrow e^- + e^+$ ("pair creation").

Exercise 4: Invariant amplitude. Consider a theory with three different real scalar particles, interacting through the Lagrangian

$$\mathcal{L}_I := q \, \phi_A \, \phi_B \, \phi_C$$
.

The masses satisfy $M_A > M_B + M_C$, so that the decay $A \to B + C$ is kinematically allowed.

- (a) Draw the Feynman diagrams of orders $\mathcal{O}(g)$, $\mathcal{O}(g^2)$, $\mathcal{O}(g^3)$ for this process.
- (b) Write down the absolute value of the amplitude, $|\mathcal{M}|$, at order $\mathcal{O}(g^3)$.